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ABSTRACT

The laminar, two-dimensional flow of a viscous vortex, driven by

tangential fluid injection in a porous cylindrical container, is considered.

The jets are idealized as sources of mass and momentum; no aspect of Jet mixing

is considered. The tangential velocity profile in the annular region between

the jet input radius and the radius of the cylinder is found analytically as

a solution of the tangential momentum equation. The peripheral wall shear

is evaluated with and without radial fluid injection through the cylinder

wall. For a given tangential velocity in the vortex, radial fluid injection

through the porous wall substantially reduces the shear.

The effect of radial fluid injection on the fraction of the jet velocity

that is recovertd in the vortex is found by means of a torque balance, including

the torque required to accelerate the radially injected fluid to the peripheral

vortex velocity. It is found that for a given total mass flow through the

center of the vortex, radial fluid injection is always detrimental to the velocity

recovery in the vortex; that is, for a given jet velocity, diversion of a

fraction of the mass flow from tangential to radial injection always results

in a reduced vortex strength. The explanation of this phenomenon is presented.

The results for zero radial fluid injection are compared with experimental

data for which the flow was turbulent. It is found that the theory predicts

the recovery accurately even for turbulent flow, provided an appropriate turbulent

eddy viscosity is included in the evaluation of the radial Reynolds number.
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I. INTRODUCTION

The use of a vortex flow as a means of containing a nuclear fuel in a

gaseous fission rocket has recently been proposed in the literature. (1)(2)

The containment process requires a high tangential mach number coupled with

a small radial mass flow. This combination is difficult to achieve in

hydrodynamically driven vortex tubes (i.e. vortices driven by tangential

fluid injection) where it is usually necessary to supply large amounts of

mass injection in order to generate strong vortices. The mechanism which

limits the strength of a confined, jet-driven vortex is the peripheral

wall shear, which retards the flow and removes angular momentum from the

system. This loss is manifested as a reduction in the percentage of the

jet velocity that is "recovered" in the vortex.

Reduction of the peripheral wall shear may enhance the jet velocity

recovery in Lhe vortex. Such a reduction cat! be accomplishcd by mcans of

radial fluid injection through the outer wall of the vortex tube, but only

at the expense of increased mass flow through the device. The purpose of the

present study is to assess the effect of radial fluid injection on the wall

shear in a vortex tube and to investigate the resulting influence on the let

velocity recovery which, for a given jet velocity, is equivalent to the

circulation or "strength" of the vortex.

It will be shown that although substantial reduction in wall shear is

possible, it is never possible to increase the velocity recovery by diverting

a fraction of the total mass flow from tangential to radial injection; that

is, for a given total mass flow, maximum recovery is achieved by injecting

all the fluid tangentially.

The geometry under consideration is shown in Fig. 1. Fluid is introduced

by means of discrete jets or slits spaced uniformly around the periphery of the

tube. The fluid is removed along the axis of the tube. The wall is considered

porous so that some fluid may be injected radially. To simplify the analysis,

iA is assumed that the tangentially injcctcd fluid is introduced continuously

and uniformly around the circumference of a circle of radius. - R, where R is

the radius of the cylinder and / is less than one. The jets are idealized

/I
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as sources of mass and momentum; no aspect of the jet spreading or mixing

problem is considered. In the region under study, the flow is assumed to

be two-dimensional. The analysis is performed for laminar flow although

there is evidence to indicate that the results can be partially extended to

turbulent flow if the proper value of the eddy viscosity is included in the

definition of the radial Reynolds number.

II. ANALYSIS

The equation governing the fluid motion in the annulus bounded by

r = R and r = le R is, for two-dimensional, axi-symmetric flow:

dv v d dvV)
ýiu + r) drir dr rr

The solution of eqn. (1) is well known and is, for ý± = const:

v = Arl + Br(1 + Reo) (2)

where A and B are constants and

Re = pur (3)
Sco

The Reynold's number Reo, is based on the mass flow which is injected

radially through the porous wall, and is a constant, for a given mass flow,
by continuity. For flow direcLed radially inward, it is negative since u is

defined as posliive when directed radially outward.

Eq. (2) represents the solution to eq. (1) for all values of Re except0

Re = -2 which is a singular point of the differential equation. However,0

Re = -2 is a removable singularity and will, therefore, not be considered0

further.

With the boundary conditions:

v=O at r=R

and

v = V. at r_= R ; 1.<I
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the constants A and B can be determined. The result is:

A BR(2 + Reo) (5)

and Vj/ /R

B72 +Reo) (O1(2 + Re.)-

The factor a represents th fraction of the jet velocity that is recovered

in the vortex.

The shear at the wall is proportional tc dv a r=R, which is given

by:

(dv ~avj ,6?R (2 + Reo)(6
= (6)

\ rI R 22 t /(2+ Re) -J

The fractional reauction in wall shear due to blowing is found by normalizing

with respect to the value dr for Re = o (i.e. no radial fluidwith~ ~ ~~~~' repc ote au fr•=R o

injection). The result is:

a (2±(2 ) + R)e 2_

Uw 0 a 0  2 (,2 + Reo

where %0 is the recovery with no radial mass injection.

III. DETERMINATION OF a

The velocity recovery in the vortex, a, is determined by equating the

jet input torque to (minus) the algebraic sum of the fluid torques existing

at r = / R. Thus, it is necessary to know the velocity profile in the inner

region, r < ( R, as well as the velocity profile in the outer anmulus

determined above. For the purpose of the following calculation the approximate
(3) _solution of Einstein and LI will be assumed for the inner flow. That is:

? K Re.
2 (i K) r' r r(

ro; ( 8
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where: v' r' and

_____ Re. I 2 (1 - e Rei/2]

Re (i- ei2 -(Rei + 2) - e/Rei/2) 9

The radial Reynolds number Re. is based on the total mass flow through the

interior of the vortex, which is equal to the sum of the radially injected

mass flow and the mass flow entering through the jets. r' is the dimensionlesse

radius of the exit hole at the cenLer of the vortex. Once again Re = -2
is a removable singularity of the governinga .. ffpe~ntli•1 equation.

Using the above assumption, the torque exerted by the inner flow at

r = R- can be computed. The calculations follows:

T. = (-21tr 2 -d R- r-2,rAL • (T)]

and using eq. (0) :

T= 2iCVj N. R 12K- Rei(l - Kj) (10)

It is to be noted that this torque acts in the same direction as the torque

exerted by the Jets, i.e. it tends to accelerate the outer fluid. Thus,

neglecting this component of the torque (as was done, for example, in Ref. (1))

is conservative, in that a smaller value of a will be predicted.
From the calculation of section II, the torque exerted by the outer

fluid at r =9R+ is found Lo be:

( + Re + Re0)

T =2+ Reo0 ,1) (11)

It is easily verified that this torque is numerically equal to the retarding

torque exerted by the wall plus the increase in angular momentum experienced

by the radially injected fluid in moving from r = R to r = 1R.



Page 5

The jet input torque is proportional to the mass flow introduced by the

jets and the velocity difference (I - a)V . Explicitly:

T = -27Kp(i - a)V R(Rei -I leo) (12)
j0

Setting:

T (Ti + TO)

and solving for a yields:
(2 7Rei

a 1+ Rei(l- 7) - (2-+yRei)1 + (2 + Rei)K - Re (13)

where y(- Re0 /Rfei) represents the fraction of the total mass flow that is

injected radially through the porous wall.

For no radial mass injection, y 0 and, in this case,

Re

(0 2_-2l) + (2 + Rei)K

Eq. (14) is plotted in Fig. 2 for several values of/ . The solid curves

are for r' = 0.1 and the dashed for r' = 0.5. It is seen that a is a verye e 0
weak function of r' . This stems from the fact that the function K is relativelye
Insensitive to the value of r' and, in fact, approaches unity exponentiallye
as Rei becomes increasingly negative. The limit K = 1 corresponds to potential

flow in the vortex and is a valid approximation as long as Re,,- -3. For this

case, eq. (14) can be simplified somewhat and may be reduced to:

Re. 2• 2
a =a -I-- (15)o a + Re i Fý2_1

To deternine the effect of radial fluid injection on the recovery, and

to evaluate the wall shear, it is necessary to examine the function ((/Va).

In the region of validity of the approximation K = 1, this can be written as:

I
I
!
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/ Re.i + a (16)

(2 i ~ e

where:

b (2 + 7Rei)

Eq. (16) may be rewritten in the form:

a• J b - ( 12 R" ) (17)

+ N÷-l 7 (1 - Y)

Itcn eRe. (:b) 2 - Te

it can be shown that the second term on the right hand side of eq. (17) is

always negative when 0 1 y 1, OA'L1 and Rei- 0, so that (a/•%) is always less

than one. in order to show this, it is necessary and sufficient to prove

that the function

(1X/(1

is less than or equal to one whenever -, cog x/ 2 and 0 z/4_ 1. This can

be seen by noting that the function in the denominator of the above expression.

is a monotonically decreasing function of x.

Eq. (17) is plotted in fig. 3 for two values ofý6 'and several values of

,. The shear stress from eq. (7) is shown in fig. 4 with (/ao) evaluated

from eq. (17).

At first glance, it may seem rather surprising that radial fluid injection

iG detrimental to the recovery even though it produces a considerable reduction

in the shear stress at the wall. However, this may be understood by noting

that for fixed values of Re i and V,, increasing 7 implies decreasing jet

momentum available to drive the vortex,. In addition, some of the remaining

input momentum is required to accelerate the radially injected fluid to the

peripheral vortex velocity. Apparently, the decrease in retarding torque exerted
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by the wall is not sufficient to offset these two "lossss".

As a matter of interest, and for computational purposes it may be noted

that

independent of the -value of

IV COMPARISON WITH MPRIbNTS

There is some existing experimental data on jet-driven vortices of(4(5)
the type analyzed here. Experimentally determined values of co

were taken from Ref. (4) and (5) and the points are shown on Fig. :2. The

vortices in these experiments were turbulent and the corresponding Reynolds

numbers were computed using an experimentally determined value of eddy

viscosity. The geometrical values of ( varied from 0.88 Lo 0.95.

Apparently the "effective" value of /was somewhat less than the geometrical

value, which may be the result of unsymmetrical jet spreading. In any

case, considering the uncertainty involved in evaluating the eddy viscosity,

the agreement with the analysis must be considered satisfactory, indicating

that the analytical results may be applied to turbulent flow provided suitable

cutimates can be made of the turbulent eddy viscosity and effective injection

radius.

U

II
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SYMBOLS

a function of/ý5? defined in eq. (15)

A constant

b function defined in eq. (16)

B constant

K funcLion defined in eq. (9)

'/ mass flow introduced radially through porous wall

r radial coordinate

R radius of porous cylinder pur
Re radial Reynolds number ( -

T torque

u,v radial and tangential velocity components

V. jet injection velocity
J

x (2 + 7Rei)

a fraction of the jet velocity recovered in the vortex ( - V- )

Svelocity recovery with no radial mass injection

Sratio of injection radius to tube radius Re

7 fraction of total mass flow that is injection radially ( -- )
ei

4 viscosity

S. shear stress

7• wall shear with no radial mass injection
wo

Superscript

7 normalized with respect to conditions at r R.

Subs cripts

e refers to exit conditions

i refers to conditions for r 44 R

o refers to conditions in outer annulus, r >, R

w refers to conditions at r = R
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